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SU44ARY

This report discusses a combined analytical and experimental research

program to evaluate the trim conditions and dynamic stability characteristics

of a proposed AEROCRANE heavy lift vehicle in hovering and forward flight,

using a free-flight Froude scale model.

Pursuant to the conclusions and recommendations of previous analytical

and experimental hovering investigations reported in Reference 1, the model

and model systems were revised and modified to allow safe and well-controlled

experimental investigations in hover and forward flight. The principal

modifications and revisions involved implementation of a stability aug-

mentation system and provision for achieving a fully buoyant non-rotating

state for flight safety.

Prior to actual flight testing a theoretical model for prediction of

aircraft trim conditions in forward flight was developed. Linearized

equations of motion for dynamic stability were extended to include forward

flight, and the influence of a sling load as well as the umbilical cable

associated with the free-flight model.

Hovering and forward flight experiments were conducted in Hangar No. 1

at the Naval Air Engineering Center, Lakehurst, N. J., and the data from

these investigations were used to corroborate the analytical models for trim

and dynamic stability. The results of this comparison indicate that

the analytical models provide very good predictions of the trim and dynamic

stability characteristics of the AEROCRANE model.
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NOMENCLATURE

A angle of attack rotation matrix

a rotor blade lift curve slope, per rad.

a acce leration vector

Ale longitudinal cyclic pitch, referenced to gondola axes,

deg or rad.

B sideslip rotation matrix

b number of blades, b 4 ~

B2.@ lateral cyclic pitch, referenced to gondola axes, deg or red.

L Cblade chord, ft, q 2.3 ft.

C damping matrix

cc drag coefficient of centerbody, C0 ,

CM rotor in-plane force coefficient, CH H

P nYR2 (OR) 32

CL rolling moment coefficient, Cf. = p rR2L n)R

CLM magius force coefficient of centerbody,

CLN p V 2 rrR g2

CM pitching moment coefficient, C" M Tp i2 (OR) 2 R

CT thrust coefficient, CT T
T T p TiE2 (OR) 32

C, rotor lateral force coefficeient, Cy
p nR' (OR) 2
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- rRI
R  

. .

D sphere drag force, lbs.

F control matrix

Fe buoyant force, lbs.

Fm MMagnus force, lbs.

fm rotor radial station factors, fN 1 - xn

H rotor in-plane force, rotor axis system, positive to the

rear, lb.

Hu, Mu stability derivatives divided by ml and I" respectively

I t  vehicle moment of inertia about xg and ys axes, including

apparent mass contribution, slug ft2

I vehicle moment of inertia about zg axis, slug ft 2

z

proportionality constant between harmonic inflow and

rotor aerodynamic moment

K spring matrix

KA attitude feedback gain, rad/rad/ or deg/deg
I

L rotor hub rolling moment, rotor axes, ft-lb.

Ls  total rolling moment, shaft axes, positive right side down, ft-lb.

Me  sum of mass of vehicle and apparent mass, slugs

mA apparent mass of vehicle, calculated for centerbody only, slugs

rce effective mass of umbilical cable, slugs

mL sling load mass, slugs

m 0 vehicle mass, slugs

Ms  total pitching moment, shaft axes, positive nose up,

ft-lb.
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M rotor hub pitching moment, rotor axes, ft-lb., mass matrix

PA load attachment point position vector

k load center of gravity position vector

p roll rate, positive right side down, rad/sec

q pitch rate, positive nose up, rad/sec

r o 0distance between center of buoyancy and center of gravity,

positive for center of gravity below center of buoyancy, ft.

rotor radius, ft.

load reaction force vector

Re centerbody radius, ft.

s Laplace operator

SBA stability augentatitn system

t time

T rotor thrust, rotor axis system, positive up, lbs.

UO horizontal velocity (along x g axis), positive forward, ft/sec.
f

u coponent velocity along x axis, ft/sec.

V velocity vector

V trim flight velocity, fps, V UO + W

v caponent velocity along y mxis, or induced velocity, ft/sec.

V volume of centerbody, ft 3

V coponent of velocity along z axis, ft/sec.

W total lifted weight of model Including sling load

and umbilical cable weight, lb, W - W0 + W L + V

W° 0vertical velocity (along z. axis), positive downward, or

model weight, lbs.
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X rotor wake angle measured from vertical, column vector

Y rotor side force, rotor axis system, positive right

Ye lateral force, body axes, positive to right, lb.

ZA distance frcm load attachment point to vehicle center

of gravity, ft.

arotor angle-of-attack

gondola sideslip angle, positive for vehicle motion

to the right

y phase angle for stability augmentation, positive clockwise

from top

0 rotor blade pitch angle. Referenced to wind axes,

o A W COS *R - B3w sin *.

Referenced to gondola axes, 0 = 80 - A,9 cos *a - B1 sin *-

0 vehicle pitch angle, positive nose up, rad

00 rotor eollective pitch, rad0r
e pitch rotation matrix

Xs  rotor inflow ratio, positive for flow up through rotor
S

). cosine component of dimensionless induced velocity due to

blow back, Xe = X-L x

i, W L harmonic inflow components due to rotor aerodynamic
2 C M 2 C

pitching and rolling moments, Xm = ;-' X = j-a

X I rate of change of cosine component of induced velocity with

radius due to "blow back", dimensionless
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rotor advance ratio

p density of air, slugs/ft8

be
rotor solidity =a - c

O vehicle roll angle, positive right side down, red

I roll rotation matrix

* blade &zInnh angle, *t is measured fran downwind, 4* is

measured from gondola reference axes, positive in direction

of rotor rotation, or yaw rotation matrix

Iz

(00 nutation frequency, a d 1 2, a/sec

Fs ro  a sc

WP- 2 square of pendulous frequency, wp 
2 

- -,

L uncoupled sling load pendulous frequency, L =j- rad/sec

Orotor/centerbody angular velocity, RPM or rad/sec
w R9

x ratio of centerbody radius to rotor radius, X =

Subscripts

( )A referenced to attachment axis system

( )e *referenced to body axis system

C )referenced to gravity axis system

C). referenced to rotor axis system

( )s referenced to shaft axis system

( )w referenced to wind axis system

(*) differentiation with respect to time

( )', ( )' intermediate axis systems
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INTRODUCTION

This report presents the results of a combined analytical and ex-

perimental research effort to investigate the dynamic stability and trim

characteristics of a Froude scale model of the AEROCRANE heavy lift vehicle.

The research described herein is intended to quantify the aircraft's transfer

functions to control inputs and its trim conditions in hovering and forward

flight operation in still air.

An analytical and experimental investigation of the hovering dynamics

of a 0.1 Froude scale model was conducted and reported in Reference 1.

During these investigations it was determined that the model exhibited a

lightly damped retrograde precessional motion, that under certain conditions

of rotor thrust and center of gravity positions, could become unstable.

Although piloted analog simulations indicated that with proper motion cues

a pilot could stabilize this mode with a reasonable level of effort, it

was also demonstrated that a remote pilot, with inadequate motion cues,
I

would have great difficulty in controlling the model. Theoretical in-

vestigations considering a coupled four-degree-of-freedom hovering ana-

lytical model showed that a relatively simple azimuthally-phased attitude

feedback would readily stabilize this mode at very low levels of feedback

gain. Accordingly it was recommended in Reference 1 that such a feedback

control system be incorporated in the model control system for future

experimental investigations.

It was further recmmended in Reference 1 that the analytical model

of the vehicle be extended to include forward flight. It was considered

that this extension of the analytical model would provide insight into

11



the dynamic behavior of the vehicle in forward flight that would be

valuable in planning and conducting forward flight experiments with the

model. This extended analytical model would also provide the basis for

corroboration of both hover and forward flight experimental results in

quantifying the vehicle tiansfer functions to control inputs.

Finally, it was concluded in Reference 1 that certain aspects of the

model and model control system could be modified to increase the safety

* of experimental flight operations. In particular it was deemed advisable

to incorporate a means for rapidly achieving a buoyant state at any flight

condition and simultaneously arresting the model's rotational motion so as

to lessen the probability of model damage in the event of model control or

power loss, etc.

The research efforts reported herein incorporated the above-cited

recamendations and implemented the conclusions of Reference 1 by measuring

the hover and forward flight trim and dynamic stability characteristics of

the AEROCRANE heavy lift vehicle using a Froude scale dynamic model in free-

flight. The experimental results are compared with the results obtained

frcm the analytical model.
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ANALYTICAL MODEL FOR TRIM AND DYNAMIC STABILITY

This section presents the analytical model to predict the forward flight

trim conditions and the dynamic response characteristics of the AEROCRANE.

The formulation is complicated by the fact that the rotating centerbody

produces lateral force owing to the Magnus effec and thus forward flight

trim involves a vehicle roll angle as well as a pitch angle. Further, owing

to the comparatively large drag and Magnus force developed by the centerbody,

the trim roll and pitch angles are relatively large and consequently small

angle assumptions are not made. In order to make the presentation more

compact the development is presented in matrix notation and then expanded

to produce the trim equations. The dynamic response equations are obtained

by a perturbation analysis about the trim condition. The perturbations are

assumed to be small. angles; however the large angle formulation is retained

for the trim or equilibrium condition.

I. TRIM ANALYSIS

1.) Axis Systems

The following axis systems are defined:

a.) Gravity Axis Systems, X. (x 0 , y9 , zQ)

This axis system is. oriented such that z . is parallel to the local

gravity vector and points downward. x. points forward in the direction

of flight of the vehicle. The flight velocity of the vehicle lies in the

plane of x., z. and in general is composed of a horizontal velocity Uo

along the x. axis and a vertical velocity W0 along the z. axis. Thus U0

and W describe the velocity of the vehicle with respect to the earth.

3



b.) Gondola or Body Axes, Xs (xs, yg, ze)

This axis system is aligned with the body or gondola of the vehicle.

The body axis xe lies along the longitudinal axis of the gondola pointing

forwardand the axis z@ lies along the shaft or vehicle axis of rotation.

The orientation of this axis system with respect to the gravity axis system

is given by three rotations; 8, the body pitch angle; 0, the body roll angle;

and #, the body yaw angle. These rotations are performed in the following

order: 0 is a rotation about the xG axis; B is the second rotation performed

about the deflected y axis (y') and * is then rotation about the further

deflected z axis (z'). The cyclic control is referenced with respect to

the orientation of the body or gondola axis system, i.e., the azimuth angle

for cyclic is measured with respect to the negative xg axis and is positive

in the direction of rotor rotation.

c.) Rotor Axis System, XR (Xe, YR, ZR)

This axis system is employed in the derivation of the rotor forces and

moments. The zm axis lies along the rotor shaft or axis of rotation and

the xR axis lies in the plane of the relative wind. The orientation of this

axis system is obtained by rotation of the body axis system, X9, about the

z9 axis by the sideslip angle, 0 such that the x. axis lies in the plane

of the relative wind. That is, by definition in this axis system, the

velocity component along the y,* axis is equal to zero in equilibrium flight.

In the derivation of rotor forces and moments, the azimuth angle is measured

with respect to the negative xR direction, positive in the direction of

rotor rotation.

4 L



d.) Wind Axis System, Xw ( ' 

The centerbody drag and Magnus forces are defined in this axis system.

The xw axis points in the direction of the relative wind. The orientation

of this axis system is obtained by rotation of the rotor axis system, X4

about the yR axis by the angle-of-attack, a, such that x points into the
w

relative wind. That is, by definition the resultant flight velocity is

along xV and the velocity components along the yw and zw axes are zero.

e.) Shaft Axis System, Xs (xs , Ys' 0s)

One further axis system is employed for force and moment resolution and

this is referred to as a shaft axis system, which involves only rotation of

the gravity axis system through the first two rotations, O, the vehicle roll

angle and, e, the vehicle pitch angle. This is convenient owing to the

fact that the two rotations, the body or gondola yaw angle, t, and sideslip

angle, 0, will appear as a sun.

These then are the five axis systems employed in the development. They

are shown schematically in Figure 1. To proceed with the development we

employ the following compact notation. The symbol X with a subscript refers

to a particular axis system as well as the three components of any vector

defined with respect to the particular axis system, for example, the three

velocity components in that system or the forces or moments with respect to

that axis system. Further, the various rotation matrices are denoted by

single symbols,

5..'' ,



roll r 1 0 01
= [ 0 : sin

0 -sin 0 Cos 01

pitch rCos e 0 -sin e

0 1 0

sin e 0 cose] (0)

awr Cost sin4 0

-sin* Cos 0

[0 0 1j

J
sideslip cos 0 sin 0 0

B -sin0 cosa 0

tangle-of-attack Cos a 0 sin a

A 0 1 0

-sin o 0 cosa

Note also that since all of these matrices correspond to rotations,

the inverse of any of these matrices is equal to the transpose of the matrix.

Further it may be noted that when the matrix product B* appears it can be

expressed as

il, 6

r



Cos + sin( +) 0

0 1 1

thus B* is a function of (p + t) only.

Transformations among the various axes are given by

XR = B Xg~(3)
X =AX2

2.) Forces

The various forces acting on the vehicle are defined in various of

these axis systems as follows:

a.) Gravity and Buoyant Forces

The weight of the vehicle, V acts in the positive z a direction at

the center of gravity of the vehicle, and the buoyant force, Fe acts in

the negative z. direction at the center of buoyancy of the vehicle. Thus

the vector of forces produced by gravity and buoyancy is,

x= ()
W - Fg

b.) Rotor Forces

The rotor produces aerodynamic forces consisting of thrust, T, in-plane

force H, and side force, Y, defined with respect to the rotor axis system

(XI). The thrust is positive in the negative z , direction, the in-plane

7



force is positive in the negative xR direction, and the side force is

positive in the positive y, direction. These forces act at the rotor

hub. Thus the vector of forces produced by the rotor is,

H

x.) (5)
T

c. ) Centerbody Forces

The influence of forward speed in combination with centerbody rotation

produces a drag force and a magnus force which are defined in the wind axis

system (Xw). The drag force, D, is defined as positive in the negative xw

direction and the magnus force, F,, is defined as positive in the positive

Y direction. These forces are assumed to act at the center of the center-

body. The vector of forces produced by the centerbody is thus

"1x ~ i -- :6)

It is assumed that the gondola produces no aerodynamic forces owing

to its small size.

The contributions of these forces can be summed to determine the re-

sultant force acting on the vehicle. In matrix notation summing forces

in the direction of the shaft axes, the three force equilibrium equations

are, using the transformation relationships given by equation (3),

8



x= (AN-)T Xw + (BY)T XR + X4 (7)

The first term represents the centerbody forces, the second term the

rotor forces, and the third term the gravity and buoyancy forces. Equi-

librium flight is given by the condition Xs = 0. Equation (7) can be

expanded using the rotation matrices given by equation (1) and (2) and

the forces given by equations (4), (5) and (6) to yield,

(-W + Fe ) sine cos 0 - H cos (0 + ) - D cos (0 + *) cos

- (Y+FP,) sin (0 +-) 0

(W-F )sin0-Hsin (0 +,)-Dsin(P +) cos, (8)

+ (Y + FMco () +C)- 0

(W -F,) cos e cos -T -D sin a 0

3.) Moments

The rotor is the only component of the vehicle assumed to produce

direct moments. The rotor produces a rolling moment, L,which acts about

the positive x. axis and is thus a vector in the positive x. direction.
e

Similarly the rotor pitching moment M is represented by a vector in the

positive yt direction. Thus the rotor moments expressed as a vector are

IE V (9)
0 .

Since the rotor is propelled by tip propulsion the net rotor torque is

zero. It is assumed that the rotor RPM is constant and consequently the

balance of yawing moments is not considered further.

i!9



Moments are taken about the center of gravity of the vehicle which is

assumed to lie on the axis of rotation a distancer below the rotor hub. It0

is also assumed as noted above that the center of buoyancy is coincident

with the rotor hub and that the drag and magnus forces act at the center of

the centerbody. Thus taking moments in the shaft system

T S

X* includes all of the forces acting at the rotor hub and consequently in-
s

cludes all of the forces contained in Xs with the exception of the gravity

force. The vector H is defined in the shaft axis system

H = rk
os

where ks is a unit vector along the zs axis.

In vector form

x*7x~s s

1~ °°
Consequently

~r Y*i

x -rX*J (12)
s ao s

0

Therefore the aumation of moments using relationships (9), (10) and (12) is

ELs = L coS ( + - M sin (P + $) +r o Y(1

EM = L si (s +) + M cos (0 + )r o z s

where from equations (8)

10



X*= F sine C0 s -H cos (S + )-D 0 (D +) cos a

- (Y+F") sin (0 +4)

Y*= -Fsin -Hasin (0+ ) -D sin (0 C osa
+ (Y+F") Cos (0 +4)

Moment equilibrium in trimmed flight is given by ELs = 0, EMs = 0 which

can be expanded using equations (13) and (14) as

Lcos (0 )-Msi (-M+a) +r (-F, sin 0-H sin (0+4)

-D sin (9 +4) coSg + (Y + F,) cos (0 + f= 0
(16)

L sin (+ ) + M cos (P +4) +r o f-F, sine cos 0 +Hcos (0 +4)

+4 +D cos ($ +) cos of + (Y+ F) sin (0 + 0

These equations may be written in a somewhat simpler form using

the force equilibrium conditions (X = 0, Y = O) as
5 S

X= w si he cos € (17)

Y;-- W sin0

Equations (16) take the somewhat simpler form

L Cos (0 + 4) - M sin (o + 4) -r OW sin 0 = 0

(18)

£ L sin (0 + 4) + M cos (P + 4) -r.W sin 0 cos 0 = 0

Thus the trim conditions of the vehicle are given by solution of equations

(8) taken either with equations (16) or (18). To solve the trim problem

L0611



the forces and mments appearing in these equations must now be related

to the flight velocity and control positions. The initial flight condition

is specified in terms of horizontal and vertical flight velocities with

respect to the earth, and the gondola yaw angle with respect to this flight

path and then the five equilibrium equations given above are solved to

determine the equilibrium values of the pitch attitude, roll attitude,

collective pitch and cyclic pitch from these five equations. The sixth

equation, the yawing moment equations has not been included since it would

be used to determine the power required. It is assumed in the trim cal-

culation that the rotor RPM is known.

4..) Velocity Components

First, the velocity components must' be expresssed in various axis

systems. The flight condition is specified in the gravity axis system by

the horizontal velocity U. and the vertical velocity Wo, thus the vector

of velocity components in the gravity axis system is

vaI= 0 (19)

The transformations given by equations (3) are employed to find the

velocity components in various axis systems.

v. T e jv.

V B Vs (20)

V AV,

V5  f VQ

12



The sideslip angle is defined by the fact that 
the velocity component v3

is equal to zero, i.e.,

uR

V 0o 
(21)

The angle-of-attack is defined by the fact that the velocity components v.

and w are equal to zero, i.e.,

V 
,

Vw  o (22)

~0

where V is the resultant flight velocity. 
From equation (20)

V, = By e 6 V0  
(23)

Expanding equation (23) the following results 
are obtained for the velocity

components in the rotor axis system, 
expressed in terms of the horizontal

and vertical velocityU 0 and Wo .

U -U cos (0 + *) cos e + wo  cos ( +*) sine cos 0

+ sin (0 + 4) sin 01

v R-U 0 sin (0 +*)cose +Wosin( +) sine cosO (24)

0+ co (0 +4) sin 0)

w,, Uo sinl +W cose cos 0

13



The sideslip angle is determined from the condition that vR = 0, so that

the following relationship exists

-U sin (P + *) cos 8 + W (sin (0 + * ) sin e cos 00 0

(25)
+ cos (0 + *) sin 0 =0

In the case of level flight (W° = 0) this relationship simplifies to

U0 sin (P +#) cose =0 (26)

and therefore in level flight,

p-4 (27)

In general, equation (25) must be included with the trim conditions to

determine the sideslip angle. Once the sideslip angle is determined,

the angle-of-attack is given by the condition

Wa (28)a= tan -  ()
UR

where wN and uR are determined by equations (24). Again in the level
e

flight case (W. 0), using equation (27), the following relationship

exists

-=8 (29)

The magnitude of the velocity in various axis systems is given by

V~~ W ~T =/7

5.) Cyclic Pitch

The expressions for the rotor forces and moments are developed in a wind

axis system and consequently the cyclic pitch included in these equations is

14



referenced to the azimuth angle measured from the negative XR axis called

#R. The physical system on the vehicle uses the negative direction of

longitudinal gondola or body axis, xg, as a reference. This azimuth angle

is denoted #5. Therefore

* = + (30)

The rotor or wind referenced cyclic is therefore

= - Aj1 cos * - Bx, sin #I (31)

The physical or shaft referenced cyclic is therefore

AG = - A-1 cos *8 - B.9 sin *. (32)

Substituting equation (30) and (31)

AG = - [Alw Cos 0 - B-1 w sin 0] cos *a
(33)

- [Blw cos 0 + Alw sin 0] sin 4.

Therefore the relationships between the actual cyclic pitch controls of

the vehicle Ale and B1 9 and the wind referenced controls appearing in the

rotor equations are

A18 =Aw cos 0 - B1 w sin 0
(34)

B1 1 = Blw cos 0 + A1w sin 0

In particular these equations must be noted when calculating stability

detrivatives.

6.) Analytical Models For Forces and Moments

The expressions for the various forces and moments described above
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must now be expressed in terms of the various flight condition variables.

a.) Gravity and Buoyant Forces

The weight, W, is the weight of the vehicle including the weight of the

helium in the centerbody. The buoyant force, Fe, is equal to the density of

the air times the displaced volume

F,= pgI (35)

b.) Rotor Forces

A detailed derivation of the rotor forces is given in

Reference 1. They are based on the assumption that the rotor blades

do not flap and can be assumed to be infinitely rigid. The rigidity of

the rotor is accounted for in the aerodynamic model by assuming that

harmonic inflow components Xt. and Xj are developed proportional to the

aerodynamic hub moments developed by the rotor such that

2C

(36)
2CL

XL J 7 -

Further an harmonic component of the rotor inflow arises from the

"blow back" of the wake. The magnitude of this effect is taken to be twice

that given in Reference 2.

X -- tan X (37)
OR 2

where

--lta" (38)
s

Twice the value given in Reference 2 was chosen for reasons discussed in

Reference 1.
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The total rotor inflow is given by

= ' (x1 + XM) cos 4I " XL sin 4R (39)

where
WE - V

s OR

and the rotor induced velocity is given by momentum theory (Ref. 3)
CT-

W! -v 2 U 2(

2fq +

The rotor advance ratio is s =R. The various f factors account for the

fact that the rotor root is at the radius of the centerbody, Re

Define

X fn X

The expressions for the rotor forces in coefficient form are:

,T [f3  , f] (x5 -,L ,) f 1

3 + AS _+ XLfS fja +""3 -''2- "fi + 2 2'-'x f  'f

2C4 e0 JXL 4 B,° + P f T Xsf + XL f A

Ia f 2 [ 2 j

-f +- - s  X L A -f
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c.) Rotor Moments

The hub moments produced by the rotor were also developed in Reference

1, and are given by

2c.M-- 4 + _____-_X_ 4 " T f.

a l+ if 3 1+ f3

(14.2)

-) ,1 P= 2T["+  fa] + s  f3 +  " f

- Pw

1 + f3

d.) Centerbody Forces

The drag and Magnus forces acting on the centerbody are given by the

expressions

(Uo2 + W2 ) S (43)

and

Fm P ( 2 +W )SCL- (44)

The drag and Magnus force coefficients are assumed to be independent of

centerbody advance ratio based on limited data presented in Reference 4.

This completes the development required for prediction of the trim

conditions with the exception of the sling load and umbilical cable effects.

These effects are considered in a later section.

To summarize the trim calculation, the physical parameters of the
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vehicle are specified and the flight condition chosen. The flight con-

dition implies that the horizontal and vertical velocities, U° and Wo,

are chosen as well as the body or gondola yaw angle, t. The gondola yaw

angle physically reflects the orientation of the gondola with respect to

the trimmed flight direction. Then the following equations must be solved

simultaneously in the general case,

Balance of Forces, equations (8)

Balance of Moments, equations (16) or. (18)

Velocity Component Relationships, equations (24)

with the conditions

VM = 0
-1we

=tan-1 _
Ult

Vehicle control, wind referenced control relationship,

equations (34)

Rotor and Centerbody Forces and Moments in terms of

Flight Condition, equations (41), (12), (43), and (414)

The solution of these equations yields trim values of the rotor cyclic

and collective pitch, the vehicle pitch and roll angles, and the angle-of-

attack and sideslip angle.

The velocity relationships are considerably simplified in the case

of level flight reducing to the conditions "=-4, and o = 8.

It should be noted that this equilibrium solution does not include

the effects of the sling load and umbilical cable. Appendix D discusses

incorporation of these effects into equations (8) and (16).
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Level flight was characteristic of all the flight conditions

examined in the experimental program. Further, in the flight program,

the gondola orientation was always selected such that 4 = 0 and therefore

fran (27), 0= 0.

Consequently the simplified trim equations for initially level flight

are, placing condition (27) on equations (8) and (16) level flight equations

are as follows:

(-W+ Fs) sin$ cos - H- Dcos O = 0

(W-FI)sin 0+ (Y+F)=o

(W - F9) cos e'cos 0 - T - D sin 8 0 (45)

L +r 0 [- F@ sin 0 + (Y + F")) = 0

M +r 0 - Fs sin 8 cos 0 + H + D cos 0-=0

The last two equations may also be written alternatively using equations (18)

as

L - r W sin = 0
(46)

M - roW sin 8 cos 0 0

These equations are then solved using the rotor and centerbody force and

moment relationship given by equations (41) and (42). Note also that since

the initial sideslip is zero

, = A (47)
BIg m BIN

The equations given by (45) were programed on a digital computer and
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solved for the trim condition. The method of approach was to initially

solve the three force equations neglecting the rotor in-plane and side

forces to determine initial values of the roll and pitch attitude and

then the moment equations can be solved for the cyclic pitch required.

Once an initial trim solution is obtained the rotor in-plane and side

forces are calculated, added to the equations and a new trim condition

calculated. Typically this procedure converges rapidly as the rotor

in-plane and side forces have only a small influence on the trim attitudes.

II. DYNAMIC STABILITY ANALYSIS

This section develops equations of motion for the AEROCRANE incor-

porating a sling load. The attachment point of the load on the vehicle

is taken to be an arbitrary point located on the axis of rotation. The

load is assumed to be a point mass and has two-degrees-of-freedom with

respect to the body. Aerodynamic forces on the sling load are neglected.

The forces and moments acting on the vehicle were resolved into a

shaft axis system(Xsa) in section I. The shaft system orientation is

obtained by rotating the gravity axis system (X,) through the vehicle roll

and pitch angles. We now introduce two additional axis systems as necessary

to proceed with the development of the vehicle-sling load equations:

a. Attachment Point Axes XA (xA, YA, ZA)

These axes are always parallel to the shaft axes Xs . The origin of

this axis system is located at the attachment point.

b. Load Axes XL (ZL, YL, zL)

This axis system is a body axis system attached to the load with its

origin at the load center of gravity. The z L axis points downward and is
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parallel to the support cable. These axes are shown schematically in Figure

l(c) and Figure l(d) shows the freebody diagram employed in the analysis.

R and L are the force and moment vectors acting on the vehicle form-s s

ulated in Part I given by equations (7) and (10). RL is the force vector

which represents the force applied to the vehicle produced by the load and

acts at the attachment point.

The equations of motion for the vehicle-load system can be written in

vector form using Newton's Laws as

of -s

s s
mn ac 01F = A, + Rs(148)

ML aC L = - RL + FO,

Hc.jL + OL X & I " L) X (- &L)

The first two equations are the equations of motion of the vehicle where

X and L were calculated in a previous section. The third and fourths 5

equations are the loadeequations of motion. It has been assumed that there

are no external forces acting on the load with the exception of the gravity

forces. This assumption is quite reasonable owing to the high density of

the load employed in the experiments. The sign of the moment term in the

last equation arises from the fact that moments are taken about the load

center of gravity. Hc, 1 p is the moment of momentum of the vehicle with

respect to the center of gravity of the vehicle and 6s is the angular rate

of the X axis system. HRcOL is the moment of momentum of the load with

respect to the load center of gravity and "L is the angular velocity of the
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load axis system with respect to space. The support cable has been assumed

to be a massless rod. It is further assumed that the load is a point mass

that is, that its moments of inertia are zero with respect to its center

of gravity and consequently HRCIL = 0. Therefore the fourth of equations

(48) becomes

PL X RL = 0

This implies that the reaction force AL always lies along the support

. cable direction. The reaction force can therefore be eliminated from the

third of equations (48) by taking the cross product with PL so that the

third equation becomes

ML (PL'C. GI Pt X FOL

RL is then eliminated from the first and second equations using the third

equation

= F OL - ML SC 01 L

so that equations (48) can be written as

HC a r +~ n X c. ACG A X (P 0L -ML ;C 1 L + E

M celp (PO- mL aCOIL )+ (149)

the~ L~s X1  ' COIL) =Pi.X PF,,

the astequation can also be written as

PL x (ML CQIL - FL) = 0 ( 4 9a)

Now the individual terms in equations (49) and (49a) are developed. 1, 3,

denote unit vectors with subscripts indicating their axis orientation.
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The various accelerations involved in the equations of motion may be

written as

aC OIL = A + dL X (dL X PL) + 6L X P

CF V.i .
(50)

The attachment point acceleration is

sA C ac1jV + 5s0 1 8 A +sXP

The various terms in equations (49) and (50) are given by

PA =A-ZA k

=L ZL kL (51)

1s = p s i. + qs 3.

(= Ps £s + q 3 + PL IL + qL JL

s

PL and qL are the angular velocities of the load relative to the vehicle

which has angular velocities ps and qs"

The angular displacements of the load axes with respect to the shaft

axes are given by a roll angle OL and a pitch angle eL so that the rela-

tionships among the various axes are

xs =ei X2

XL =e L Xs

x : . o24



Thus

I cos O sin e sin 0 -sin e cos 0

s= Cos sin 0

h sin -sin 0 cos cos O cos 0

a (52)

i Cose 1. sin L s L - sin 9L cosL IS

J ,= 0 cos 0L sin L. 3S

bL e L Sin 0 LCOS eL COS e LCOS 0L k

The development is specialized for hovering flight by assuming that

the initial vehicle and load attitude angles are zero such that 0, , L

and OL represent perturbations from trim. It is further assumed that

these perturbations are small so that equations (52) can be expressed as

i s = i - 8 ka

3s =3 0°+ 0k 0  :S +

ks 0 ai j + ic (53) :

5. L

.=e + L s

kL OL Is - OL 3J + i

For the load equation, it is desirable to express the gravity force in

terms of components in the load axis directions. This is accomplished
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by inverting transformation (52)

s 1~) [ Cose 0 sinS 9
sin sin 0 Cos - sin 0 cos

EQ-sin eCos sin 0 Cos 9 Cos 0 ks

C013~ CO 0 sin OL

s in 1. sin O.  cosOL -sin 0 Cos L, L
i L n cosj )

'ie . COSBOL COSO1  C0 L1 COS OL )

For small angles

=is + 

j:- 1 0 ® +k

S S

ks= 9S +0S +

s s 5 (54)

s  1L + a.L L

3s =3 " OL

ks = - e OL L+L 3L + EL

Substituting from the second set of relationships in (54) into the first

'4=1L (_ -OL ) +(0 +OL3L +k'L (55)

where only first order terms have been retained as consistant with the small

26



angle approximation.

The load angular velocity expressed in load coordinates becomes

L = (Ps + PL) IL + (q + qL) IL

where only first order terms have been retained.

The load acceleration is given by

a CIL aA + (4s + L) ZL iL - (bs +  ) Z 3L (56)

where again only first order terms have been retained. The acceleration

at the attachment point aA is given by

aL = CQ;P + R4sZA i S})

(57)

- (~ZA 3 s

Converting equation (57) to the load axes reference using (54), retaining

only first order terms and incorporating into (56),

aCOIL = CI + ( (ZA + ZL) + 4L ZJ IL

(58)

- [, (ZA + zL) + Pt ZJ 3 L

Equations (58) and (55) are now employed to express the reaction force

RL in load coordinates

RL =FL m- L 'COIL
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R. =ML g .- ( + 9L) 1 L + (0 + 0OL) 33

- AL t 8coF+ [- (ZA + ZL) + 4 L ZLI iL (59)

" [s (zA + z7L) + ZL zL] LI

Expressing the components of this vector as

XL=- mL g (8 + ) - ML [4S (ZA + ZL) + 4L ZL -mL Us

SL ML ( 0) + ML Its (ZA + ZL) +LzL] -L ML (59a)

so that

t(POL - ML 'COIL )=XL IL + YL jL + ZL 2LThe load equation of motion is obtained from (49a) as

PL X (LCOIL -FQL)-or I.

JL ZL X. 'L iZL YL 0 i

For the second of equations (49) the reaction RL is expressed in terms of

shaft coordinates. This is obtained from the unit vector relationships

given in (53) taken with equations (59a). Since X. and YL are perturbation

quantities the result is

(PoL - IRL 'COIL )  (XL + L zO i s
(60)

+ (YL- O ZL + z ,
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since ZL = mg, equation (60) can be written as

P11 - mL ;COIL = (XL + MLg 9 ) is (6oa)

+ (YL- mLg L) s +MLgs

This is the form of the reaction force required for the second of

equations (49). For the first of equations (49), the cross product PA X

(FGL - ML acIL ) must be calculated where PA = ZA k. Taking the cross

product using equations (60a)

PA X (FOL -ML aC ) GIL s Z (XL + mg 8)L

- is fZA (YL - m L9)L

The equations of motion can be written as

HC 1F + ns x H = 5 3S (ZA (XL + mLg e1 )I

- i tZA (YL - ML9 O)] + s

(61)

m' a-C.l, = (x,+mLg%.) is

+ CYL -L ?aLg) 3s + m~g i s +X

3L ZL XL - . ZL YL = 0

where XL and Y, are given by equations (59a).

Equations (61) are the equations of motion for the AEROCRANE with

a point mass sling load. These equations can be simplified by noting

that the last of these equations reduces to

XL 0 o (62)

YL = 0
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so that the first two equations become

HcQ, s x HCaF + x S + 3s (Z A 3 Lg O)

+ s (ZAu=g #) (63)

M' ;c 41 = MLge L i s - Lg k + x

Expanding equations (62) and (63)

I' + Iz Oq =L s + ZA MLg OL

I' - I P =Ms + ZA MLg O

M I s = X s +  L g  e L

S(6h)I
m % Ys - m Lg

" mL s - m Lg (9 + L) - ML (As (ZA + ZL) + 4 L Z) = 0

-ML % + M g ( 0 + L ) + ML (bs (ZA +z) + DZ) = 0

Equstions (6.) are equations of motion for the AEROCRANE including the

effects of a sling load. They have been specialized for the hovering

case by the assumption of zero initial attitudes. For the general case

of forward flight the assumption of zero initial trim angles must be

removed.

as a result of the small angle assumptioh

DL = 0L

and

p 0

N 30



Substituting into equations (64)

I'0+1 0e=L +ZAm Lg
z S

I 0I +-I 0=M +ZAULgL

(65)
' :Y -2 ,g ,.

S S

- ML as - MLg (0 + eL ) U L (0 (ZA + ZL) + L Z L) =0

- M L V8 + m Lg (0 + OL ) + M L (0(ZA + ZL) + kL ZL) =0

The expansion of Xs, Ys, Ls, and Ms in a Taylor series about the

equilibrium flight condition has been treated in detail in Reference 1.

There are additional aerodynamic terms which were developed in Reference

1 which depend upon the acceleration of the vehicle and arise from the

fact that the center of gravity of the vehicle is not located at the

center of buoyancy.

These terms are jith signs for the right hand side of the equations

Rolling Moment equation

r aS-o =a s

Pitching Moment equation

o a s (66)

Horizontal Force equation

k reo a

Lateral Force equation

-r oma
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Further the effects of the umbilical cable must be added. These are

developed in detail in Appendix B and are given by the sum of equations

(B-18) and (B-34) as

Rolling Moment equation

me ZAv ZA )W ZA (1 - ad ) 0e Z('s +  0 cZ 1

Pitching Moment equation

mce z s( s +WzC)-wZA (1 + d9)

Horizontal Force equation (67)

Mce (.s' z eA) " Wc (1 +- e

Lateral Force equation

Mce ( ZA ) + Wc (1 + d)

Combining equations (65), (66) and (67) gives the hovering equations of

motion.

These equations may be written compactly in matrix notation as

M ( 1 + C ()1 + K (qi = F (61 (68)

The mass, damping, spring, and tontrol matrices, M, C, K, and F are

given on the following pages. The motion variables (q) are

0

eL

The control matrix [81 is

I3.
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These equations of motion were solved to determine the characteristic

dynamics of the vehicle.

The moment equations are normalized by the inertia I', the force

equations by the mass m , and the sling load equations are divided by

the sling load mass times the sling load length. In order to make the

notation more compact the following symbols were introduced.

2 F r 0CD --

I'

Cu z

I

Wa =..

sL Z L

In addition, the symetry properties of the aerodynamic derivatives were

employed to eliminate the lateral derivatives, i.e.,

L Mq Le = - MA

Lv = " M YA = H9

is is
Lu M v

Y = H
Yv u

Y = -H
q p

The subscript notation for the aerodynamic derivatives implie- that

the moment derivatives have been divided by I" and the force derivatives

by '.

33



14-

* 1. __ _ _ _ _ _

1,-44

K II III I



w 1k

Mae~

-H~. %4v.

35



K'

'I&,

36V



37



The object of the experimental program was to determine the vehicle

transfer functions, which can be obtained from equations (68) in the following

fashion. First the Laplace transform of equations (68) is taken giving

[MsM + Cs + K] (01 = F (A) (69)

where (Q) is the Laplace transform of the motion variables (q) and (A) is

the Laplace transform of the control variables [6]. Equations (69) become

-[Ms + Cs + K] " F (4] (70)

There are twelve vehicle transfer functions, given by the elements of the

matrix (MS2 + Cs + K]- 1 F. The twelve elements of the matrix are shown

symbolically in the next page. These elements characterize the response

of the vehicle and sling load to the control inputs. Since there are six

motion variables and two control variables, twelve transfer functions are

required to characterize the dynamic motions of the vehicle.

The transient response experiments were designed to verify the analytically

calculated transfer functions which describe mathematically the dynamic response

of the model. Owing to the polar symetry of the model and its aerodynamic

characteristics in hovering flight, six of these transfer functions are simply

related to the other six by the following relationships

(s) 9 (s)

e,.(s) 9 1 (s)
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y~(s)

owing to these relationships only a B1 o input was applied in hovering,

as the response of the vehicle to AL@ inputs can be determined from the

response to BL, inputs.

The experimental verification of these transfer functions is

discussed in a later section of the report.
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EXPERIMENTAL APPARATUS

I. MODEL

The model employed for the experiments described in this report is a

modification of the 0.107 Froude scale model of a proposed 50 ton payload

AEROCRANE vehicle as described in Reference 1. The modifications consisted

principally of an increase in the spherical centerbody diameter, provision

of a du pable water ballast package and incorporation of a stability aug-

mentation system. According to the conclusions and recommendations made

in Reference 1, these modifications were provided to increase flight safety

by allowing positive buoyancy to be achieved at all times and to ease the

remote pilot's task in controlling the lightly damped model motions with

inadequate motion cues.

A photograph of the modified model in hovering flight and showing the

dumpable water ballast sling load is shown in Figure 2, and a 2-view drawing

is presented in Figure 3. Table I presents a summary of the model physical

characteristics.

II. CENTERBODY MODIFICATIONS

To achieve the additional buoyancy required for flight safety consider-

ations the gas-containing spherical centerbody was increased in diameter from

16 feet to 18 feet, providing an additional 60 lb of buoyant lift. The

increased gas envelope size necessitated a revised internal structure con-

sisting of longer frame members, addition of internal stress-relief cables

and gas envelope stress-relief patches at the radial pass-through fittings
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to accommodate the increased buoyant gas loads. These structural modifications

are shown schematically in Figure 4.

III. WATER BALLAST SYSTEM

The Jettisonable water ballast used to simulate a payload was carried

in a special aluminum container with a trap-door type bottom and suspended

from the model gondola as a sling load as shown in Figure 2. The water was

contained in a plastic bag liner fitting within the aluminum container. The

trapdoor latch was secured with light polyester fishing line which was in

turn wrapped with a coil of high electrical resistance wire. Upon command

from the truck-based operator an electric current would heat the high

resistance wire, melt the polyester fishing line and allow the trapdoor to

open, thereby jettisoning the water ballast. Electric power for the Jettison

was provided by a dedicated 24 volt battery, thereby assuring operation even

with complete power loss from the truck generator systems.

IV. STABILITY AUNTTATION SYSTEM

As a result of the flight test experience and analysis efforts reported

in Reference , it was determined that a stability augmentation system (SAS) to

stabilize the lightly-damped retrograde precessional mode would greatly ease

the remote pilot's burden in controlling the model. Although it was demon-

strated in analog simulator flights that the pilot, with adequate motion cues,

could stabilize this mode, in the model flight operations the required cues

were not available to the remote pilot, and controlled flight was nearly

impossible. Further, it was shown in Reference i that a phased attitude

feedback given by the expressions
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A1 s KA [0 sin y -e cos y] (69)

B11 = KA [0 cos Y +8 sin y] (70)

would effectively stabilize the lightly-damped precessional mode. Accordingly,

for the experiments reported herein, a stability augmentation system was

implemented to accomplish this task.

In view of the exploratory nature of the research, the time constraints

associated with the experimental operations and the test objective of forward

flight experiments, a more general stability augmentation system was designed

and installed in the model controller. This stability augmentation system,

schematic representations of which are shown in Figures 5 and 6, allowed

for selection of any desired feedback phasing angle, y, in addition

to y = 450 as indicated by equations (69) and (70). Additionally,

although the hovering analysis of Reference 1 indicated no specific need

for angular rate feedbacks, these were allowed for in the implementation

as diagrammed in Figure 6.
I

Model attitude and rate information was supplied to the SAS (stability

augmentation system) by the three-axis integrating rate gyro package des-

cribed in Reference 1. This instrumentation package, originally intended

for flight dynamic data acquisition, was more than adequate for SAS inputs

and performed faultlessly. The analog integrators required for determining

model attitude from the rate gyro information were revised to virtually

eliminate environmentally-produced drift errors.

43



V. AZIMUTH-HOLD LOOP

The azimuth-hold loop, driving the retrograde motor that allowed the

gondola to be positioned azimuthally, was revised to provide greater torque

capability and thereby eliminate the difficulties experienced in the flight

tests report in Reference 1. The revised system possessed approximately

4 times the torque capability of the original system. Extensive laboratory

testing of this vital loop closure was performed on a specifically-designed

flight simulation set-up to insure satisfactory performance, and, although

in-flight performance was adequate throughout the flight envelope, certain

dynamic problems were encountered in flight, and loop compensation adjustments

were required.

VI. RAPID DECELERATION SYSTEM

A necessary function in the flight safety systems that includes rapid

achievement of a fully-buoyant state through ballast dump is the rapid

deceleration of the model rotational motion. The model rpm control system

operates through varying the speed of the four fixed-pitch propellers mounted

on the model wings by adjusting the output of the main 400 Hz model-power

alternator. In order to decelerate the model rotational motion rapidly it

is necessary to actually reverse the propulsive motor voltage polarity and

hence reverse the direction of rotation of the propellers. To accomplish

this, reversing-current relays were installed on the model gondola electrically

downstream of the rectifier package. A high sensitivity alternator field

control potentiometer was incorporated to allow the operator to rapidly

reduce the motor power to near zero, actuate the polarity reversing relays
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and subsequently reactivate the alternator field to provide reversed thrust.

The system in operation was capable of arresting the model rotation in

approximately one revolution without exceeding model motor rated currents.

Thus, in the event of an in-flight problem that threatened the flight

safety of the model, the model rotational motion could be arrested and a

fully-buoyant state achieved by ballast dump in approximately 3 seconds.
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EXPERDNAL FLIGHT TEST PROGRAM

The experimental flight test program was conducted in Hangar No. 1 at

the Naval Air Engineering Center, Lakehurst, N. J. in the time period from

March 21, 1977 to May 2, 1977. A total of 56 data runs were performed and

approximately 20 hours of flight time were accumulated. The principal

test objectives were to quantify the model trim conditions and transfer

functions as they varied with flight condition, model configuration and

stability augmentation (SAS) for correlation with the theoretically pre-

dicted characteristics.

The flight testing efforts and procedures were divided into two

principal types of tests, hovering and forward flight; each of these types

will be discussed separately.

I. HOVERING FLIGHT

A photograph of the model in a typical hovering flight is presented in

Figure 7 showing the model, water ballast sling load and umbilical. At the
C

bottom of the photograph can be seen the parked truck which carries the crew,

model control and power systems. A photograph of the flight crew arrangement

is presented in Figure 8 showing the pilot, flight engineer and test director

at the model system control and data consoles. Although the photograph of

Figure 7 shows the bottom of the umbilical suspended from a tower mounted

on the test truck, most of the hover runs were accomplished without the

tower, and the umbilical ran downward from the model directly to the

ground. This arrangement allowed hovering tests to be performed without

any horizontal force or moment contribution from the umbilical cable



Other hover tests with the umbilical tower, as pictured in Figure 7, were

performed with horizontal force and moment initial conditions imposed by

the umbilical catenary shape. A summary of the hovering test conditions

investigated is presented in Table II.

The hovering tests were performed by establishing a steady hover

condition with the bottom of the model approximately 90 ft. above the

ground and with the umbilical hanging directly downward. This zero-

initial-condition hover was established with the SAS in operation at

y = 450 and with the gain KA = 0.3 0/o. This SAS configuration has been

established on the initial run as being a level of stability augmen-

tation that was completely comfortable to the pilot and for which the un-

disturbed model motions were undetectable. At these initial conditions the

SAS gain was reduced to the level desired for the particular test sequence,

and a pulse input in cyclic pitch was applied by the test engineer by

means of a switch on the engineer's console. After establishing the initial

conditions and throughout the ensuing transient response, the pilot's controls

were held fixed. Figure 9 shows typical hovering transient responses for the

unstabilized model and with various level of SAS gain..

II. FORWARD FLIGHT EXPERIMENTS

Photographs of the model during forward flight experiments are presented

in Figures 10 and ii. In these figures can be seen the relative position of

the model, umbilical catenary and the truck carrying the crew and model support

systems. The forward flight tests required additional instrumentation, not
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necessary for the hovering experiments, consisting of a fifth wheel for

measuring truck speed, and umbilical shape and position instrumentation.

The fifth wheel is mounted under the rear of the truck as seen in Figure

l and the umbilical shape and position instrumentation is mounted at the

top of the umbilical support tower on the truck.

The test procedure for the forward flight runs commenced with es-

tablishing a steady hover in the northwest corner of the hangar imnediately

to the right of the center crack in the hangar doors visible in Figure 10.

Owing to the presence of a fenced in storage area, also visible in the

foreground of Figure 10, it was necessary to fly along a diagonal path

towards the southeast corner of the hangar. Runs were made in one direction

only, principally to eliminate the necessity of reccmpensating the rate

gyro package for earth's rotational rate. Once a steady hover had been

established with the model in a position relative to the truck that was

acceptable with respect to altitude and umbilical shape, the pilot would

apply the cyclic and qollective pitch inputs required to transition the model

to the desired forward flight condition. The truck driver was required to

adjust the truck speed to stationkeep with the model. The desired forward

flight trim conditions were established with a ncminal SAS gain of approxi-

mately 0.3 0/0 and y = 450 . For the initial forward flight runs the trim

condition was maintained steadily with no additional control inputs in

order to measure the model trim conditions. At a predetermined location

along the line of flight the transition back to hovering flight was

instituted and the end of run hover established. In general, excepting

for the very lowest speed flights, transitions to and from the forward
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flight trim conditions were made with the pilot operating in an open loop

fashion. That is, there was inadequate space within the hanga for the

pilot to perform a transition by a series of mafll perturbations to the

controls and subsequent corrections to flig":t path errors. Instead, estimated

trim control positions were predetermined and the pilot simply put the

control at these values, at a prudent rate, to perform the transition. The

SAS-augmented model stability level was such that no difficulty was experi-

enced in transitioning in this mnner. A typical transition time history

is presented in Figure 12 showing the pilot's control inputs and the ensuing

model pitch and roll angular motims.

The data required to determine the model transfer function to control

inputs were obtained, as in hover, by applying an electrical pulse input

to the cyclic controls by means of a switch. In forward flight, however,

in order to obtain the unstabilized (KA = 0) model transfer function and

still maintain the required trim control settings, it was necessary to utilize

track and hold networks on the model control signals. These networks held

the trim controls required while the SAS gain was switched to zero to obtain

the desired transient response time histories. Such a typical transient

response time history at a forward flight trim condition is shown in Figure 13.

Table III present a summary of the forward flight trim conditions.
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CCMPARISON OF ANALYSIS AND EXPERIMENT

The results of the flight test experiments and the theoretical developments

have been compared on a run by run basis to corroborate the analytical models.

Where necessary, adjustments have been made in the theoretical representations

to obtain better agreement between theory and experiment. In general, only

fractional adjustments in various coefficients were required to obtain ex-

cellent correlation between the experimental results and the analytical modesl.

I. TRIM CORRELATION

The correlation between theory and experiment for forward flight trim

conditions is presented in Figures 14 through 16 which show comparisons of

measured and predicted model longitudinal and lateral equilibrium conditions.

The correlation demonstrated in these figures was obtained by adjusting the

assumed value of CD of the rotating spherical centerbody principally on the

basis of the longitudinal equilibrium comparison. The resulting value of

CD = 0.80 is a 33% increase over the CD = 0.60 value assumed in Reference 1,

taken from Reference 4. No adjustment was required to the assumed value
e

of Magnus lift coefficient, CL = 0.30, and the rotor wake representations

remain as developed in Reference 1.

1. Longitudinal and Lateral Force Equilibrium

The expressions for force equilibrium, equations (45), can be combined

and solved directly for the Magnus lift and drag forces, giving:

Fm -(W- F)sin -Y- -SYcos 0

and

H (w - Fe)H = - cos + (Y + Fm) tan 3 tane + SX
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where the additional terms SX and SY represent the measured umbilical forces

acting on the model, and level flight at zero slideslip has been assumed.

These quantities have been evaluated using the experimentally- measured

values for all terms excepting Y and H, the rotor in-plane forces, which

were evaluated using the theoretical model at the experimental operating

conditions. The resulting values are presented in Figures 14 and 15 and

compared with the theoretical values for F" and D employing the assumed

force coefficients.

As can be seen in Figure 14, the original value of CD = 0.6 seriously

under predicts the values of centerbody drag extracted from the experimental

data and a value of CD = 0.80 is chosen as being a fair representation of

the drag coefficient within the experimental scatter. The sources of the

experimental scatter in the drag data, include, in probable order of

importance, determination of model velocity from truck speed measurements,

wind currents within the hangar and accuracy of measurement of umbilical

shape and position.

The last source of error is particularly important in the determination

of Fm since the umbilical lateral force term, SY, was not measured directly

but was inferred from the beginning-of-run hover umbilical position. This

uncertainty is reflected in the relatively-larger scatter shown in the

experimental Fm data presented in Figure 15. The theoretical Magnus force,

assuming a value of C i 0.30, is shown in Figure 15 in comparison with

the experimental data. Due to the mentioned experimental uncertainties and

the resulting data scatter it was concluded that it would be unjustified to

attempt to refine the Magnus lift coefficient value any further.
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2. Trim Control Requirements

The data presented in Figure 16 show comparisons of theoretical and

experimental values for the longitudinal and lateral cyclic pitch required

for trim. While the force equilibrium equations (8) used to express the

centerbody aerodynamic forces are influenced by the assumed rotor aero-

dynamics through the H and Y terms, the cyclic pitch requirements for trim

presented in Figure 16 are much more indicative of the accuracy of the

rotor aerodynamics representation. In particular the good low speed agree-

ment between theory and experiment shown in the A1 . data indicates the

absence of significant sphere wake interference effects since they are not

included in the theory. At higher speeds and inclination angles, where

sphere wake interference would be expected to be less severe and not a

factor, the experimental A. values are somewhat greater than those pre-

dicted by theory and the BIB values are in very good agreement. A possible

explanation for this may be in the less-than-perfect Coleman representatton

of the rotor wake longitudinal "blow back". The possibility of blade

stall tends to be ruled out by the fact that the average blade lift coef-

ficients are approximately the same value across the lateral axis as across

the longitudinal axis.

In general, the predicted cyclic pitch requirements for trim are in

good agreement with the experimental measurements, and it can be concluded

that the rotor aerodynamic representations are acceptably accurate for the

objectives of predicting force and moment equilibrium.
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II. TRANSIENT RESPONSE CORRELATION

This section discusses the correlation between the experimentally

measured transient response characteristics of the AEROCRANE model in

various configurations and flight conditions and the theoretical pre-

dictions. Experimental measurements were made of the transient response

to control inputs in hovering flight at two center of gravity positions

with various sling loads and levels of automatic stabilization, Table II

indicates various model configurations examined in hovering flight.
Figure 9 is typical of the data obtained. Additional measurements

are presented in Figures A-I through A-6 in Appendix A. It should be noted

that the cyclic pitch trace includes the cyclic pitch applied by the auto-

matic stabilization system as well as that applied by the operator. A

pulse input of approximately two seconds duration with an amplitude of two

degrees was employed to excite the transient motion of the model.

The transient response of the unstabilized model is characterized by a

lightly damped mode with a period of the order of ten seconds and a dampingI

ratio of less than 0.1. Figure 17 presents the frequency and damping

characteristics of this mode as measured from the traces. These measurements

should be viewed as approximations to the character of this mode as it can be

seen from the measured time histories that the responses are not precisely

damped sinusoids indicating the presence of some of the other modes of motion.

Also shown is the comparison between the theoretically predicted characteristics

of this mode as given in Appendix C with the measured values. The agreement

between theory and experiment is excellent for the high center of gravity

configuration. The damping agrees well for the low center of gravity con-

figuration and the frequency agrees for run 11. A lower frequency is predicted
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for run 36. The reason for this discrepancy is not clear, particularly in

view of the excellent agreement for the other three runs.

Figures 18 and 19 show a direct comparison of the measured and calculated

transient response characteristics for a cyclic pitch pulse input. The agree-

ment in general is very good. In particular, the amplitude of the roll response

predicted agrees very well with the measured value. The theoretical pitch

response exhibits a smaller amplitude than the measured response, however,

the overall agreement is very good. Thus, the theoretical approach presented

here gives a good prediction of the vehicle transfer functions.

.1
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CONCLUSIONS

Based upon the analytical and experimental research program reported

herein the following conclusions are made:

1..) The Froude scaled model of the AEROCRANE vehicle can

be flown by a remote pilot in hovering with a resonable level of

effort. Remote piloting in hovering flight was made considerably

easier by incorporation of a relatively simple attitude feedback

system. This feedback system stabilizes or improves the damping

of the unstable or lightly damped mode characteristic of the

AEROCRANE in hovering.

2.) In forward flight the natural damping of this mode

increases and no difficulties were encountered controlling the

vehicle in trimmed forward flight without the stabilization system.

3.) Accurate quantitative data on the trim and dynamic

stability characteristics of the model were obtained from remotely-

piloted flight tests in a protected environment.

4.) The theoretical model for the forward flight trim character-

istics of the AEROCRANE predicts the measured experimental data with a

minor adjustment in the spherical centerbody drag coefficient.

5.) The analytical model of hover dynamic stability character-

istics correlates very well with the measured model transient response

indicating that the analytical model provides a good representation

of the transfer functions of the vehicle.
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TABLE I

SUMMARY OF MODEL PHSCAL CHARACTERISTICS

ROTOR DIAMETER 39.9 ft.

SPHERE DIAMETER 18.2 ft.

MODEL WEIGHT (Wo ) Low c.g. 177 lbs.

High c.g. 192 lbs.

CENTER OF GRAVITY

POSITION (r o) Low e.g. 2.71 ft.

High e.g. 1.83 ft.

MO(HS OF INERTIA

I (pitch and roll)* Low c.g. 521 slug-ft 2

High c.g. 576 slug-ft2

1 653 slug-ft2

RUNNING WEIGHT OF UMBILICAL 0.61 lb/ft

CABLE

Determined by experiment and include virtual mass effects.

7
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(b) Ordered Rotations.
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Figure 4. Sch~ematic Drawing of Model Structural Modifications.
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APPENDIX A

HOVERING TRANSIENT RESPONSE DATA

Figures A-1 through A-6 present hovering transient response data for

the various flight conditions listed in Table II. The data in these

figures are traced directly from the oscillograph records and include

all higher frequencies contained in the original records. In particular,

the one-per-revolution content, due in part to blade tracking irregularities,

* is preserved as faithfully as possible, For clarity only B19 control time

histories are shown. The other model controls, A1. and 8., are constant

during the time histories presented.
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APPENDIX B

UMBILICAL CABLE CONTRIBUTIONS TO DYNAMIC STABILITY

The free-flight model of the AEROCRANE was equipped with an umbilical

cable to provide power and control signals to the model and to carry data

transducer signals to the ground recording instrumentation. The weight of

this umbilical cable was of sufficient magnitude that its contributions to

the dynamic stability of the vehicle must be included in the equations of

motion. This section describes the manner in which the effects of the um-

bilical cable were incorporated in the equations. Only the hovering flight

case is considered here.

Figure B-I shows the configuration of the umbilical cable for hovering

flight experiments. The shape of the umbilical cable is assumed to be a

catenary. The lower end of the cable is in contact with the ground and

assumed to remain fixed. The upper end of the cable is attached to the

model and is assumed to move only in a horizontal plane. This latter assumption

is consistant with the dynamic stability analysis which assumes that there is

no vertical motion of the model during its transient motion.

The cable will add to the mass of the vehicle and will also produce

forces and moments due to the tension in the catenary.

The effective mass of the cable is evaluated first. When the vehicle

translates it will not carry the entire mass of the cable with it but rather

will deform the cable into a new shape as shown in Figure B-i. It is assumed

that there are no dynamics associated with the cable itself. That is, the

motion of the cable is assumed to be quasi-static such that its shape is

always that of a catenary. The effective mass of the cable can be determined

by evaluating the kinetic energy of the cable as a function of the horizontal

translation velocity of its upper end (Aio).
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Define the following quantities

m - running mass of cable

s arc length of cable

x,y = horizontal and vertical coordinates to any point on the cable

O(y) = mode shape of catenary, normalized by horizontal deflection of

upper end of the cable.

Thus the equation describing the local horizontal translation of the

4cable is given by

Ax = A x0  (y) (B-1)

Differentiating this expression, the translational velocity of the

cable,incorporating the quasi-static assumption that the shape of the

cable is unaffected by motion, is given by

= o (y)

the kinetic energy of the cable is therefore

s

KE mf (AA)' ds
Of

or

KE= m 4A 2 2
s 0(y) ds (B-2)0

Evaluation of the integral will give the effective mass of the cable.

Now the equation for the perturbed shape of the catenary is developed

such that the integral in the expression for the kinetic energy can be

evaluated.

The equation of the catenary shape shown in Figure B-i is given by

y Lo (cosh x -l) (B-3)L
0
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where
L MH

L --

0 m

and H = horizontal component of tension in catenary.

The assumption that the upper end of the cable moves only in a

horizontal direction (Ay = 0) gives a relationship between a pertur-

bation of the tension, H0 (or L0 ) and a perturbation of the upper end

of the cable, Ax 0 . From equation (B-3)

AY = 0 =&AL (cosh- 2 l -1.2  sinh -2) + Ax sinh = (B-4)
00 0 LO

Solving equation (B-3) for x

x = cosh i [i+ _ ] (3-5)0 Lo

If the cable translates horizontally a small distance Ax equation (B-5)

becomes

x + Ax =(L + AL) cosh -I [i+ L (B-6)
0 L + AL

Therefore subtracting'equation (B-5) from (B-6)

Ax =(L + AL) cosh.. "1 [i + Lo +AL] - L cosh [i + ]0. 0o 0
Assuming that the change in tension is small compared to the initial tension

LAx -- AL cosh -1 (1 + 0_ 5 (B-7)
Lo L

Equation (B-4) is used to eliminate AL from equation (B-7) so that an

equation is obtained which relates the local horizontal translation of the
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cable to the translation of the upper end,

Axx
sinh 5  i; - cosh. (

L L
x A((B-8)

Equation (B-8) thus gives the mode shape of the perturbed cable, tbat is,

it is of the form given by equation (B-i) such that

0 =) cosh -i (i+ -)

0 x x xl L

0 sinhL +i - cosh

Lo0 01

oL

0° (B-9)

The first term in bracketis determined by the initial shape of the cable,

i.e., by the horizontal distance between the end of the cable on the floor

and the end of the cable attached to the model.

It is possible to find a simple approximation to equation (B-9). Figure

B-2 shows that the second bracketed term in equation (B-9) is approximated

very closely by

L cosh (il+s ( +0

0 L
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* I Equatiorn (B-9) can be further simplified by using the boundary condition

at the uipper end of the cable where from equation (B-l)

02

Therefore x OX 0sinh +1- cosh.-
L 0 L 1

sinh.-2
L0 

ro

Thus the approximate mode shape is given by

0 (B-12)

L
= m O3 tds(-)0 

00

Thesaicutengt isugivn (By1 ito-) the relationship for h atenary

xEmAov 1 Y d (B-13)

can be expressed in terms of arc length as, noting that m so m c, the total

mass of the cable,
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in + , + 

KE o*0 " 0 (B-15)
02

where
- 0s

lo L0

Lo, the ratio of the horizontal component of the tension to the running mass

of the cable is found from the equation of the catenary (B-3) knowing the

initial end points of the cable. For the various hovering experiments the

typical height of the model (yo) was 80 feet and the horizontal distance of

the model from the point at which the cable left the ground was 25 feet (xo).

Substituting these values into equation (B-3) to determine L and then using

equation (B-14) it is found that,

S= 10.79
0

For values of s of this magnitude which were typical of all of the hovering
0

experiments, equation (B-15) can be considerably simplified. For s greater
0

than about 6 as shown in Figure B-2 a very good approximation to the term

in brackets in equation (B-15) can be obtained and equation (B-15) can be

approximated by

KE~c M 2 a* 2 (B-16)cz ;o- 0

The effective mass of the catenary is therefore0i
Mee a -d (B-17)

and is approximately one-half the actual mass of the catenary. The value
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One-half was used in the dynamic stability analysis since the cable mass

is small relative to the mass of the vehicle, and a more refined treatment

was not considered Justified.

Consequently, the inertia effects of the cable are considered to be

represented by a concentrated mass equal to one-half the actual mass of

the cable supported (mce ) located at the attachment point of the cable.

The contributions of the cable to the acceleration terms in the

various equations of motion are

Horizontal Force

AXc =-rce [as+ ZA 0]

Lateral Force

AY c = [ Z4 0] (B-18)

Pitching Moment

M = race ZA [ii + ZA ]

Rolling Moment

ALc = ce ZA [-"+ ZA 0]

The terms given by equations (B-18) are added to the dynamic stability

equations to include the effect of cable inertia.

In addition to these acceleration effects the weight of the cable

will produce forces and moments on the vehicle.
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Figure B-3 shows the geometry involved in estimating the contributions

of the cable weight to the equations of motion. It is assumed that the

cable is straight when looking forward, as shown in the figure. The

following notation is employed,

T = tension in cable at attachment point

Ox = initial slope of cable at attachment point

measured with respect to the vertical

APx  y = perturbations in cable slope due to angular

rotation of model.

The equilibrium forces applied to the model due to cable tension will

result in an initial pitch angle (8i) so that

c T (0x + 9i)

=0 (B-19)c 
(

Z =Tc

The equilibrium moments due to cable tension are

Mc= T ZA OX

L 0

The perturbed forces and moments are

Xc + WX -(T+ T)(9 i + e + x + A x )

Ye + &Yc = (T + AT)(o + ) (B-2o)

Mc + AMc = - (T + AT) Z, (0 + 9 + x + x)

L + AL = - (T + AT) ZA (0 + a )
c C y
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The slope of the cable can be found by differentiation of equation

(B-3)

xs inn (B-21)

The equation of the catenary gives L0 knowing the initial position of the

cable, i.e., equation (B-3) is

=Lo (Cosh X - 1) (B-3)
y 0  L

Inserting typical values from the hevering experiments

x = 25 ft
0

YO = 80 ft

Equation (B-3) gives

L= 8.17 ft

consequently

x0-=3.07
L

0YO--=9.79L°

For these typical values the hyperbolic functions can be approximated by
x

Ki 0
sinh F =- e

0 x

cosh eO

therefoare equations (B-21) and (B-3) can be approximated as

x

99(B-2)
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X

y L ( e - 1) (B-23)

The slope given by equation (B-22) is related to the angle Ox by

tan (9o - 0) (B-24)
dlx

Since 0 is a small anglex

dx0

From equation (B-23)

-w (B-25)
0xx

Now to find the rate of change of 0 x with the movement of the end

of the cable, equation (B-23) can be expressed in terms of 0x as

x Ox )n (B-26)y" (i - x 0
x x

Differentiating equation (B-26), the rate of change of 0 with x can be
x

found. y is constant in the differentiation since it is assumed that the
e

upper end of the cable translates horizontally only. The result is

(l - 0)2
_x -(B-27)

y ln Lx -"(1 O" )

Now from Figure B-3 it can be seen that

Ax ZA A
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Therefore equation (B-27) can be written

do x  z4 (1 - x)2

d - ( (B-28)o Ino-L - (1- 0 )

Expressed in terms of the initial horizontal position of the cable

Ld =... x (B-29)d O x o  I 2 _ ( x -I )

Since 0 x is assumed to be small this result may be further approximated by

x
0 in 2d5x  ZA ____Ixo  in--i"

Using typical values

x0 = 25 ft ZA =9 ft

Yo = 80 ft
e

L° = 8.17

Equation (B-25) gives P.

0150Ox =g 5.3°

and equation (B-30) gives

do x

This rate of change of the cable angle with vehicle attitude will enter

into the longitudinal equations of motion.
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In the lateral case the analysis is considerably simpler since it is

assumed that the cable is vertical in the initial condition. Therefore,

the change in cable angle with roll is a result of the appearance of a

component of the initial cable angle x in the lateral plane. Thus from

Figure B-3

ZA0
Ay x x 0

or

dO (B-31
_d x 7-('3x

0

For the typical case given above

-d = 0.033
dO

The variation in cable tension must now be evaluated. Since the cable

tension must lie along the direction of the cable and the vertical component

of cable tension is equal to the weight of the cable supported,

T= W
cos

Therefore

dT W e sin x  W x (B-32)
Xd C x c x

and the initial tension in the cable, since Bx is a small angle is equal

to the weight of the cable T = Wc.

Therefore equations (B-19) can be written as

Xe = Wc (Ox + ei)

Y =0 (B-19)

z -Wc c
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The initial cable angle will produce a smail inclination of the vehicle

in hovering equilibrium. With a buoyant force, Fg, and a sling load

weight WV , the conplete equation for x force equilibrium would indicate

an initial pitch angle, i.e.,

C('PS WI.) e9 - % (9 + l )  0

W,
c i

Now the perturbation forces and moments can be evaluated by subtracting

equatime (B-19) from equation (B-20) where

y dO

AT dT dBx ,G

The various deriaatives are given by equations (B-30), (B-31) and

(B-32).

Therefore

dS
AX -- U -(e i + I- )

(B-33)

We (1 + 0) 0
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x dTdx

AMC0 = WCZA (l+LX-)e -Z!L (ae + e

(B-33 Con't)d O Z

c O cd

Since ~ Ox and '- x the second term in the horizontal force and

pitching moment expressions is small and may be neglected.

Thus the cable weight contributions to the equations of motion are
dO

A Yc =Wc ( + ) 
(B-34)

do 
X

AL0 = -WZA (1 + )

where the cable angle derivatives are given by equation (B-30) and (B-31).

These terms given by ejations (B-34) taken with the acceleration terms

given by equation (B-18) thus constitute the cable contributions to the

equations of motion.

Since for the typical hovering equilibrim the sample calculation

presented above indicates that the derivatives !x and d are small co-

pared to 1 an average value equation to 0.04 was used for both of these

derivatives in the dynamic stability analysis.

It may also be noted that the cable effects described in this section

1014



give rise to position dependent forces, that is, a horizontal translation

of the vehicle gives rise to a translational force from the umbilical cable.

The size of this effect may be estimated by calculating the trans-

lational frequency which would arise. That is for horizontal translation

the equation of motion is

(m M + )+W - x = O (B-35)

where it has been assumed that the cable tension is equal to the weight

of the cable. Thus the natural frequency arising from this effect is from

equation (B-35)

W do
x c xX+ %e

The the typical case described above

x 1 x =
dxZ dO

For the low center of gravity experiments,

m = 9.13 slugs

and a typical cable weight lifted is 50 lbs, giving

w = 0.165 rad/secX

giving a period of 38 seconds which is considerably slower than the natural

dynamics of the vehicle indicating that the effects are small and may be

neglected.
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Figure B-3. Umbilical Cable Geometry in Hovering.
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APPENDIX C

DETERMINATION OF AEROCRANE MODEL PHYSICAL PARAMETERS
AM NUMERICAL RESULTS OF DYNAMIC STABILITY ANALYSIS

This section describes the manner in which the buoyant force and

inertial properties of the AEROCRANE model were determined experimentally

and also presents the numerical values employed in the stability analysis

as well as the results. The calculated transient response characteristics

based on the numerical values given here are discussed elsewhere in this

report.

I.) Determination of Buoyant Force and Inertial Properties

Since the AEROCRANE model without sling load and umbilical cable

possessed an excess of buoyancy, the following technique was used to deter-

mine the buoyant force. The sling load was placed on a scale with the

model floating above supporting a length of umbilical cable, h0 . The

scale reading is then related to the buoyant force by the following equation

[W + Ws, + 0.61 = S + F9 (C-1)

where

W0 = weight of the basic model, lbs.

WSL = weight of sling load, lbs.

8 = scale reading, lbs.

F@ = buoyant force, lbs.

h = length of umbilical cable supported, ft.
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The umbilical cable weighs 0.61 lbs. per ft. Table C-I lists the values

of the buoyant force for various hovering runs determined in this fashion.

The aerodynamic thrust is determined from the equilibrium hovering altitude

for the specific flight. That is,

T = (W0 + WSL + 0. 6 1 )eq -F, (C-2)

where T is the aerodynamic thrust and h is the measured equilibrium

altitude, and is also given in Table C-i. The values of thrust and

buoyant force listed in Table II in the main body of this report were

determined by the above technique.

The moment of inertia of the model in pitch (equal in roll) was

determined measuring the natural frequency of the model oscillating in

pitch with the rotor not rotating. A weight was added at the bottom of

the model to increase the spacing between the center of buoyancy and the

center of gravity. The separation of the center of buoyancy and the center

of gravity provides a restoring moment and consequently produces a free

motion which is oscillatory in character. The restoring moment character-

istic was determined experimentally by hanging a weight at a blade root

and measuring the angular deflection of the model corresponding to this

applied moment. The equation of motion for the pitch oscillation is

I' I + 9-0 (C-3)

Consequently the natural frequency of the free motion is
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The measured natural frequency, w, , and the restoring moment gradient,

, measured as described above were used to determine the moment of inertia

I'. Note that this procedure determines a moment of inertia which includes

the influence of accelerating the air mass adjacent to the vehicle (apparent

mass effects). The experimentally determined moment of inertia in pitch

(equal to that in roll because of symmetry) is listed in Table C-I as well.

To obtain the configuration of runs 15 and 17 with a higher center of gravity

position a fifteen pound weight was added at the upper pole of the spherical

centerbody and this is reflected in an increased pitch inertia.

No direct measurement of the polar moment of inertia, Iz, is possible.

Consequently this value was calculated based on knowing the size, weight, and

location of all of the various components in the model. As a verification of

this procedure the moment of inertia in pitch, I', was also calculated from

component contributions. The calculated value of I' was within one percent

of the value determined from the ocillation tests and therefore tie calculated

value of I z is assumed to be within one percent of the actual value.

Comparison of the calculated center of gravity position and the spacing

between the center of gravity and center of buoyancy which can be determined

from the measured restoring moment characteristics indicated that the center

of buoyancy was 0.39 ft. above the plane of the rotor (the geometrical center

of the centerbody if the centerbody is a perfect sphere) indicating a small

distortion of the centerbody under load. This small distance was neglected

in the analysis. That is, the center of buoyancy was assumed to lie in the

plane of the rotor.
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II.) Dynamic Stability Analysis

Using the various physical parameters of the model given in Table C-1

and the equations of motion presented in the main body of the report, the

numerical values for the various coefficients in the equations of motion

were calculated for runs 11, 15, 17 and 36. These values are presented

in Figures C-I through C-4. It should be noted that as can be seen by

comparison of the numerical values of the elements of the damping and control

matrices with the literal expressions given on pages 35 and 37 that the rotor

inplane forces were neglected. Previous analyses have shown that these

terms have only a minor effect on the dynamic stability and response

characteristics in hover.

Table C-2 presents the eigenvalues calculated for these four hovering

cases. Also presented are the corresponding period and damping ratio as

well as an identification of each mode. The dynamic motion of the AEROCRANE

model in hovering in the configuration flown is characterized by five

oscillatory modes. Tjree of these modes are associated with the vehicle

and two with the sling load. One of the basic modes of the vehicle is a

fast motion that is well damped with a period of the order of 1.8 seconds

and a damping ratio of the order of 0.5. This is basically an angular

motion with its character determined primarily by the aerodynamic damping

of the rotor and the gyroscopic moments. There is a lightly damped mode

with a period of the order of Ui seconds and a damping ratio of 0.1 or

less. This is the mode which dominates the measured transient response

characteristics owing to its small damping ratio. As discussed in Ref-

erence 1, this mode may be described as a retrograde mode, that is, as

a result of the polar symmetry of the vehicle this transient motion is in
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fact a circling motion of the vehicle and in this mode the circling takes

place opposite to the direction of rotor rotation. The remaining vehicle

mode has a period of the order of 20 to 30 seconds and is well damped

with a damping ratio of the order of 0.7. It can be characterized as

an advancing mode as it corresponds to circling in the direction of rotor

rotation. Owing to its large damping ratio the presence of this mode is

not apparent in the measured or calculated transient.responses. The

remaining two modes are associated with the sling load motion in two

directions. The period of these motion is of the order of 4 seconds

and the damping ratios are very small as the sling load damping was

neglected. The isolated sling load period is 4.69 seconds indicating

that there is some coupling with the vehicle motion.

Comparison of the calculated transient response based on these

numerical values with the experimentally measured transient response

is discussed in the main body of the report.
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TABLE C-1

PHYSICAL PARAMETERS OF AEROCRANE MODEL

RUN NO. W F T W$L we

lbs. lbs. lbs. lbs. lbs.

11 177 210 89 67 55
36 177 201 64 51 37
15 192 206 52 20 46

17 192 199 84 42 49

RUN NO. I I r ZA ZSL

slug ft. slug. ft. ft. ft. rad/sec

31 521 653 2.71 9.0 18 2.72

36 521 653 2.71 9.0 18 2.92

15 576 653 1.83 9.9 18 3.00

17 576 653 1.83 9.9 18 2.96

m, = 3.63 slugs.
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TABE-C-2

CAIULATED EIGERVALUES FOR HOVERING RUNS

RUN NO. 11.

EIGENVALUES PERIOD DAMPING MODE
-1 se. RATIO

-2.275 * 3.5751 1.76 o.536 FAST ANGULAR RESPONSE

-0.086 * 0.6681 9.1 0.128 LIGHTLY DAMPED RETROGRADE

-0.248 L o.272i 23.10 o.674 WELL DAMPED ADVANCING

-0.035 * 1.6151 3.89 0.022 SLING LOAD

-0.093 * 1.1438i 11.37 O.065 SLING LOAD

RUN NO. 15.

-2.096 * 3.3711 1.86 0.528 FAST ANGULAR RESPONSE

-0.013 * o.181i 12.98 0.027 LIGHTLY DAMPED RETROGRADE

-0.208 * 0.1931 32.55 0.733 WELL DAMPED ADVANCING

-o.oo: 1 .ii1 14.45 0.003 SLING LOAD

-0.029 k 1.3651 4.60 0.021 SLING LOAD

RUN NO. 17.

-2.300 :L 3.3441 1.88 0.567 FAST ANGULAR RESPONSE
-0.008 ± 0.593± 10.60 0.013 LIGHTLY DAMPED RETROGRADE

-0.24* 0.3311 18.98 0.594 WELL DAMPED ADVANCING

-0.013 k 1.501± 4.18 0.009 SLING LOAD

-o.o69 * 1.ooi 4.49 o.o49 SLING LOAD

Rw NO. 36.

-2.361 * 3.8341 1.64 0.524 FAST ANGULAR RESPONSE

-0.051 • O.56i 11.14 0.090 LIGHTLY DAMPED RETROGRADE

-0.229.* 0.2101 29.90 0.737 WELL DAMPED ADVANCING

-0.015 b 1.5381 4.08 0.010 SLING LOAD

-0.069 * 1.4151 4.44 0.049 SLING LOAD
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MASS HATnX (M)

1.132 0 0 0 0 0.004
o 1.132 0 0 -o.oo 0
1.5 0 1 0 0 -0.0555
0 1.5 0 1 0.0555 0
0. -0.235 0 0 1.094 0
0.235 0 0 0 0 1.094

DAMING MATRIX (C)

3.13 3. 409 0 0 -0.0579 0.159
-3.409 3.13 0 0 -0.159 -0.0579

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

SPR3NG MATRIX (K)

2.088 0 -1.157 0 0 0
0 2.088 0 -1.157 0 0
1.79 0 1.79 0 0 0
0 1.79 0 1.79 0 0
0 2.651 0 -7.31 0 0

-2.651 0 7.34 0 0 0

CoI RoL MTRX (")

0 -8.52
8.52 0
F C0 0
0 0
0 0

Figure C-1: Numerical Values of Matrix Elements for Run No. 11.



MASS MATRIX (M)

1.13 0 0 0 0 -o.0016
0 1.13 0 0 o.=o16 0
1.55 0 1 0 0 -0.0555
0 1.55 0 1 0.0555 0
0 0.096 0 0 1.079 0

-0.096 0 0 0 0 1.079

DAMPING MATRIX (C)

2.96 3.36 0 0 -o.oU8 0.151
-3.36 2.96 0 0 -0.151 -0.048
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

L SPRING MATRIX (I)

1.474 0 -0.7218 0 0 0
0 1.474 0 -o.7218 0 0
1.79 0 1.79 0 0 0
0 1.79 0 1.79 0 0
0 4.58 0 -4.37 0 0

-4.58 0 4.37 0 0 0

CW7ROL MATRIX (F)

0 -4-77
8.77 0
0 0
0 0
0 0
0 0

Figure C-2: Numerical Values of Matrix Elements for Run No. 17.
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WWS MATRIXC (M)

1.089 0 0 0 0 0.0088
0 1.089 0 0 -0.0088 0
1.5 0 1 0 0 -0.0555
0 1.5 0 1 0.0555 0
0 -0.5108 0 0 1.062 0
0.5108 0 0 0 0 1.062

DA3G MATRIX (C)

3.03 3.66 0 0 -0.0379 o.1543
-3.66 3.03 0 0 -0.1543 -0.0379

* 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

SPRING MAT= (K)

1.709 0 -0.881 0 0 0
0 1.709 0 -0.881 0 0
1.79 0 1.79 0 0 0
0 1.79 0 1.79 0 0
0 1.4, 0 -5.59 0 0

-1.4 0 5.59 0 0 0

CONITROL MATRIX (F)

0 -8,82
8.82 0
0 0
0 0
0 0
0 0

Figure C-3: Numerical Values of Matrix Elements for Run No. 36.
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MASS MATRIX (M)

1.121 0 0 0 0 -0.0oo7
0 1.121 0 0 0.0007 0
1.55 0 1 0 0 -0.0555
0 1.55 0 1 0.0555 0
0 o.o43 0 0 1.o74 0

-o.o443 0 0 0 0 1.474

DAKMG MATRIX (C)

2.63 3.4Ol 0 0 -0.0273 0.134
-3.401 2.63 0 0 -0.134 -0.C273
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

SPRIG MATRIX (K)

1.476 0 -0.3437 0 0 0
0 3.476 0 -0.3437 0 0
1.79 0 1.79 0 0 0
0 1.79 0 1.79 0 0
0 3.09 0 -2.08 0 0
-3.09 0 2.08 0 0 0

, ! CONMOL MATRIX (F)

o -1.89
7.89 0
0 0
0 0

V I0 0
0 0

i
Figure C-4: Numerical Values of Matrix Elements for Run No. 15.
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APPENDIX D

MODIFICATION OF TRI( EQUATIONS TO INCLUDE
SLING LOAD AND UMBILICAL CABLE

The equations for equilibrium flight formulated in the text of the

report do not include the sling load or the umbilical cable. These effects

can be incorporated in the following fashion.

Since the aerodynamic forces on the sling load are negligible owing

to the high density of the load and the low velocity of the experiments

the equilibrum flight orientation of the sling load cable is vertical as

can be seen from the steady-state solutions of the latter two of equations

(65). Thus

OL =-e

0=

Consequently, as seen froa the first four of equations (65) the sling load

adds to the weight in the two force equations and produces a moment

about the center of gravity of the vehicle. If it is assumed that the

angle that the mbilibal cable makes with the vertical is negligible in

forward flight, the umbilical also appears in the equilibrium equations in

a similar fashion to the sling load, as may be seen from equations (67).

The contributions of the umbilical from equation (67) and the sling load,

from equation (65) to the force balance equations given by equation (8)

are

horizontal force

(-mlg - wc ) sin cos 0c

side force

(m tg + wc) sin

120



vertical force

(mtg + W) Cos 0 cos e

Therefore for the force balance equations to include the effects of the

sling load and the umbilical cable, the term W may be interpreted as

W-W 0 + mg+Wc

That is, it is the total weight supported by the buoyant force and aerodynamic

thrust. This quantity W is referred to as the gross weight elsewhere in the

report.

For inclusion in the moment equilibrium both of these weights act at

their attachment point a distance ZA below the center of gravity of the

vehicle.

Thus to equations (13), the following terms must be added

pitch moment

ZA [mLg + Wc ] sine cos 0

roll moment

-ZA Cmtg + Wc ] sin 0

Thus to sumarize, to include the effects of the umbilical cable and the

sling load in the trim calculations, the term W can be interpreted in the

force balance equations (equation 8) as including the weight of the sling

load and the umbilical cable. The moment equilibrium equations (equation

16) must be modified to include the above terms. The simpler form given

by equation (18) can not be used.
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